25,417 research outputs found

    Modeling the line variations from the wind-wind shock emissions of WR 30a

    Full text link
    The study of Wolf-Rayet stars plays an important role in evolutionary theories of massive stars. Among these objects, ~ 20% are known to be in binary systems and can therefore be used for the mass determination of these stars. Most of these systems are not spatially resolved and spectral lines can be used to constrain the orbital parameters. However, part of the emission may originate in the interaction zone between the stellar winds, modifying the line profiles and thus challenging us to use different models to interpret them. In this work, we analyzed the HeII4686\AA + CIV4658\AA blended lines of WR30a (WO4+O5) assuming that part of the emission originate in the wind-wind interaction zone. In fact, this line presents a quiescent base profile, attributed to the WO wind, and a superposed excess, which varies with the orbital phase along the 4.6 day period. Under these assumptions, we were able to fit the excess spectral line profile and central velocity for all phases, except for the longest wavelengths, where a spectral line with constant velocity seems to be present. The fit parameters provide the eccentricity and inclination of the binary orbit, from which it is possible to constrain the stellar masses.Comment: accepted for publication in the MNRA

    Global Alfven Wave Heating of the Magnetosphere of Young Stars

    Get PDF
    Excitation of a Global Alfven wave (GAW) is proposed as a viable mechanism to explain plasma heating in the magnetosphere of young stars. The wave and basic plasma parameters are compatible with the requirement that the dissipation length of GAWs be comparable to the distance between the shocked region at the star's surface and the truncation region in the accretion disk. A two-fluid magnetohydrodynamic plasma model is used in the analysis. A current carrying filament along magnetic field lines acts as a waveguide for the GAW. The current in the filament is driven by plasma waves along the magnetic field lines and/or by plasma crossing magnetic field lines in the truncated region of the disk of the accreting plasma. The conversion of a small fraction of the kinetic energy into GAW energy is sufficient to heat the plasma filament to observed temperatures.Comment: Submitted to ApJ, aheatf.tex, 2 figure

    Ellerman bombs and UV bursts: transient events in chromospheric current sheets

    Full text link
    Ellerman bombs (EBs) and UV bursts are both brightenings related to flux emergence regions and specifically to magnetic flux of opposite polarity that meet in the photosphere. These two reconnection-related phenomena, nominally formed far apart, occasionally occur in the same location and at the same time, thus challenging our understanding of reconnection and heating of the lower solar atmosphere. We consider the formation of an active region, including long fibrils and hot and dense coronal plasma. The emergence of a untwisted magnetic flux sheet, injected 2.52.5~Mm below the photosphere, is studied as it pierces the photosphere and interacts with the preexisting ambient field. Specifically, we aim to study whether EBs and UV bursts are generated as a result of such flux emergence and examine their physical relationship. The Bifrost radiative magnetohydrodynamics code was used to model flux emerging into a model atmosphere that contained a fairly strong ambient field, constraining the emerging field to a limited volume wherein multiple reconnection events occur as the field breaks through the photosphere and expands into the outer atmosphere. Synthetic spectra of the different reconnection events were computed using the 1.51.5D RH code and the fully 3D MULTI3D code. The formation of UV bursts and EBs at intensities and with line profiles that are highly reminiscent of observed spectra are understood to be a result of the reconnection of emerging flux with itself in a long-lasting current sheet that extends over several scale heights through the chromosphere. Synthetic diagnostics suggest that there are no compelling reasons to assume that UV bursts occur in the photosphere. Instead, EBs and UV bursts are occasionally formed at opposite ends of a long current sheet that resides in an extended bubble of cool gas.Comment: 10 pages, 8 figures, accepted by A&

    Orthogonality catastrophe and Kondo effect in graphene

    Full text link
    Anderson's orthogonality catastrophe in graphene, at energies close to the Dirac point, is analyzed. It is shown that, in clean systems, the orthogonality catastrophe is suppressed, due to the vanishing density of states at the Dirac point. In the presence of preexisting localized states at the Dirac energy, the orthogonality catastrophe shows similar features to those found in normal metals with a finite density of states at the Fermi level. The implications for the Kondo effect induced by magnetic impurities, and for the Fermi edge singularities in tunneling processes are also discussed.Comment: 7 pages, 7 figure

    The role of damped Alfven waves on magnetospheric accretion models of young stars

    Get PDF
    We examine the role of Alfven wave damping in heating the plasma in the magnetic funnels of magnetospheric accretion models of young stars. We study four different damping mechanisms of the Alfven waves: nonlinear, turbulent, viscous-resistive and collisional. Two different possible origins for the Alfven waves are discussed: 1) Alfven waves generated at the surface of the star by the shock produced by the infalling matter; and 2) Alfven waves generated locally in the funnel by the Kelvin-Helmholtz instability. We find that, in general, the damping lengths are smaller than the tube length. Since thermal conduction in the tube is not efficient, Alfven waves generated only at the star's surface cannot heat the tube to the temperatures necessary to fit the observations. Only for very low frequency Alfven waves ~10^{-5} the ion cyclotron frequency, is the viscous-resistive damping length greater than the tube length. In this case, the Alfven waves produced at the surface of the star are able to heat the whole tube. Otherwise, local production of Alfven waves is required to explain the observations. The turbulence level is calculated for different frequencies for optically thin and thick media. We find that turbulent velocities varies greatly for different damping mechanisms, reaching \~100 km s^{-1} for the collisional damping of small frequency waves.Comment: 29 pages, 12 figures, to appear in The Astrophysical Journa

    The Stellar Parameters and Evolutionary State of the Primary in the d'-Symbiotic System StH\alpha190

    Get PDF
    We report on a high-resolution, spectroscopic stellar parameter and abundance analysis of a d' symbiotic star: the yellow component of StH\alpha190. This star has recently been discovered, and confirmed here, to be a rapidly rotating (vsini=100 km/s) subgiant, or giant, that exhibits radial-velocity variations of probably at least 40 km/s, indicating the presence of a companion (a white dwarf star). It is found that the cool stellar component has Teff=5300K and log g=3.0. The iron and calcium abundances are close to solar, however, barium is overabundant, relative to Fe and Ca, by about +0.5 dex. The barium enhancement reflects mass-transfer of s-process enriched material when the current white dwarf was an asymptotic giant branch (AGB) star. The past and future evolution of this binary system depends critically on its current orbital period, which is not yet known. Concerted and frequent radial-velocity measurements are needed to provide crucial physical constraints to this d' symbiotic system.Comment: 9 pages, 1 table, 3 figures. In press to Astrophysical Journal Letter

    Alfvenic Heating of Protostellar Accretion Disks

    Full text link
    We investigate the effects of heating generated by damping of Alfven waves on protostellar accretion disks. Two mechanisms of damping are investigated, nonlinear and turbulent, which were previously studied in stellar winds (Jatenco-Pereira & Opher 1989a, b). For the nominal values studied, f=delta v/v_{A}=0.002 and F=varpi/Omega_{i}=0.1, where delta v, v_{A} and varpi are the amplitude, velocity and average frequency of the Alfven wave, respectively, and Omega_{i} is the ion cyclotron frequency, we find that viscous heating is more important than Alfven heating for small radii. When the radius is greater than 0.5 AU, Alfvenic heating is more important than viscous heating. Thus, even for the relatively small value of f=0.002, Alfvenic heating can be an important source of energy for ionizing protostellar disks, enabling angular momentum transport to occur by the Balbus-Hawley instability.Comment: 21 pages, 9 figures. Accepted for publication in Ap
    corecore